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ABSTRACT
Background: Local estimates of HIV-prevalence provide information that can be used to 
target interventions and consequently increase the efficiency of resources. This enhanced 
allocation can lead to better health outcomes, including the control of the disease spread, 
and for more people.

Methods: In this study, we used the DHS data phase V to estimate HIV prevalence at 
the first-subnational level in Kenya, Tanzania, and Mozambique. We fitted the data to a 
spatial random effect intrinsic conditional autoregressive (ICAR) model to smooth the 
outcome. Further, we used a sampling specification from a multistage cluster design.

Results: We found that Nyanza (Pi = 13.6%) and Nairobi (Pi = 7.1%) in Kenya, Iringa 
(Pi = 15.4%) and Mbeya (Pi = 9.3%) in Tanzania, and Gaza (Pi = 15.2%) and Maputo City 
(Pi = 12.9%) in Mozambique are the regions with the highest prevalence of HIV, within 
country. Our results are based on publicly available data that through statistically rigorous 
methods, allowed us to obtain an accurate visual representation of the HIV prevalence at 
a regional level.

Conclusions: These results can help in identification and targeting of high-prevalent 
regions to increase the supply of healthcare services to reduce the spread of the disease 
and increase the health quality of people living with HIV.
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INTRODUCTION
One of the most important challenges for Eastern and Southern Africa to achieve the 90-90-90 HIV 
targets have been initiation and retention in care [1]. The lack of resources to provide appropriate 
care to all people living with HIV (PLWHIV) limits the proportion of people that can achieve viral 
suppression which in turn increases the opportunity for disease spread [2, 3]. Thus, it is essential 
to find ways to increase resources’ efficiency, to obtain the best possible health outcomes at 
the lowest investment. One way to achieve this is by improving targeting of interventions across 
geographical areas [4], which requires reliable information at the local level to guide policy 
decisions. In the context of initiation and retention to care, observing the prevalence – defined as 
the proportion of HIV positive people in a region geographically, demographically, and temporally 
defined – at a sub-national level could provide means to guide resource-allocation decisions.

The main issue with prevalence mapping is that estimations across sub-national regions are 
needed to obtain better information but are usually based on incomplete, local, survey data. 
Therefore, if no cases are recorded in a particular region, the empirical prevalence would be zero, 
even though that is likely erroneous. Hence, we recognize information is incomplete (i.e., not all 
cases have been recorded), and the modeled probability does not reflect the total population 
at-risk. In addition, because no completely-at-random sampling is feasible, survey data carries 
selection bias in its estimations. To correct these issues, we conduct prevalence mapping using 
small area estimation (SAE) [5, 6].

The aim of this study was to estimate the prevalence in a sub-set of Eastern African countries 
at the first sub-national level, to create information relevant to locally focused policy decision- 
making.

METHODS
DATA

We used the DHS HIV and geospatial data [7]. The selected sub-set of countries are neighboring 
countries in Eastern Africa, have important differences in their national HIV prevalence estimates 
and have HIV and geospatial information in the same phase of the DHS Program for sampling 
design and data collection consistency. We decided for: Kenya, Tanzania, and Mozambique, 
whose estimated national prevalence for the 15 to 49 year-old population was 5.66%, 3.97%, and 
11.98%, respectively in 2017 [8, 9]. This is the most heterogeneous cluster, in terms of national 
HIV-prevalence, in East Africa that we were able to find. These countries have spatial and HIV data 
collected in the phase DHS-V, executed between 2007 and 2009. The prevalence mapping was 
conducted over the first administrative sub-national areas: regions within countries.

The geospatial information for each country was originally formed by the sampling cluster 
information and their associated boundaries. The former included the spatial points for all 
clusters within regions, while the latter included polygons for each region within a country. Using 
the coordinates of both datasets we identified to which region each cluster belonged. Then, we 
merged the information. The HIV data were geographically identified only by clusters. We used 
the merged spatial information to determine to which region each of the clusters in the HIV data 
belonged to.

The final spatial dataset is the appended data of the three countries containing the polygons for 
each of the sub-national regions. The final HIV dataset was also the appended data of the three 
countries containing the individual health outcomes (i.e., HIV positive or negative), the cluster, and 
the associated sub-national region.

MODEL

Considering that the DHS survey used a multistage cluster design sampling, we conducted a 
SAE, with a spatial random effect intrinsic conditional autoregressive (ICAR) model [10] – the 
BYM model –, for a binary outcome. The random effects model has a higher precision than the 
direct estimation that just considers the sampling design [11]. The BYM model allows for indirect 
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estimation utilizing the information across regions, based on defined neighbors, to perform the 
smoothing. A neighbor is a region with a single- or multiple-point shared border. We allow places 
with extra neighbors to have a higher influence on the results – the “B” style. Since we treated the 
sub-set of countries as a unit, the neighbor determination is not constrained within the country. 
Hence, the prevalence estimation borrows information from neighboring regions, even when these 
neighbors are in different countries.

To estimate the spatially smoothed prevalence, pi, in each region in the first sub-national level, 
denoted by i, we fitted the data to the following model: [12]
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Where pi is the direct (design-based weighted) estimate of the prevalence for the region i, modeled 
using a logit-link given the binary nature of the outcome; Vi is the estimated variance for each 
region; β0 is the intercept which represents the shared, baseline effects; Si the spatial smoothing; 
and ϵi is the unstructured random effects. This model does not include covariates. We perform the 
analysis using the SUMMER package [13] in R.

ETHICS
This is a secondary data analysis that used publicly available information and had no contact 
with the participants. As such, it was deemed not human research by the IRB of the University of 
Washington and no level of IRB-review was necessary.

RESULTS
The original dataset, aggregated for the three countries had a sample size of 39,575 observation 
(Kenya, n = 7,001; Tanzania, n = 15,597; Mozambique, n = 16,976). After deleting the observation 
containing missing data in the geographic information only (no missing values in the HIV data was 
found), the final sample size was 39,258 (99.2%). Given the small number of missed observations, 
we did not perform a missing-at-random analysis.

We found 45 regions in total. The sample size varies highly across these regions, ranging from 308 
to 1,942 observations (Figure 1). Tanzania was the country with the highest number of regions, 26, 
and at the same time the smallest sample size for each one. Kenya, with 8 regions, and moreover 
Mozambique, with 11 regions, have higher associated sample size.

Figure 2 shows the results of the SAE. The estimated prevalence for all regions ranged from 7.24% 
to 15.5%; with a median of 5.13% and a standard deviation (SD) of 0.38. Figure 3 shows the point-
estimate results for each country. The scale for the color-code is independent for each country 
in Figure 3.

Our analysis allowed us to identify the three regions with the highest prevalence in each 
country. Nyanza (pi = 13.6%), Nairobi (pi = 7.1%), and Western (pi = 6.3%), in Kenya. In Tanzania, 
Iringa (pi = 15.4%), Mbeya (pi = 9.3%), and Dar es Salaam (pi = 9.1%). Finally, in Mozambique, 
Gaza (pi = 15.2%), Maputo City (pi = 12.9%), and Maputo (region) (pi = 12.7%). The Supplemental 
Material contains the estimated prevalence and 95% credible intervals for each region. In Kenya 
and Tanzania, we can observe that the highest prevalence is almost an outlier compared to the 
rest of the country. These results warrant a prioritization of these regions for HIV prevention and 
treatment health services.
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Figure 1 Regions under analysis 
color-coded by their sample size.

Figure 2 Maps of point estimate 
and 95% credible intervals 
for the posterior mean of the 
weighted smoothed model.
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DISCUSSION
We conducted a HIV-prevalence mapping for a subset of east African countries, with a SAE 
estimation using a BYM model. This approximation has multiple theoretical benefits. First, the SAE 
is consistent with the small sample size that observed in many of the areas under estimation. 
Second, our model acknowledges the sampling design and the associated distribution of sampling 
probabilities. Third, the spatial smoothing process allowed the model to borrow information from 
the neighbors in the estimation of each posterior to improve the precision of the estimates, which 
is particularly helpful in the presence of sparse data such as the DHS dataset. Further, our study 
has an additional advantage because it defines the neighbors beyond the country borders, by 
taking the sub-set of countries as a unit. We believe this was particularly useful in the estimation 
of the prevalence for Tanzania, where all its regions had a small sample size.

We examined the difference in performance for the estimation of prevalence at the first-
subnational level, for the weighted model that includes a correction for cluster sampling, and 
the weighted-smooth model that includes a smoothing process for the outcome. Figure 4 shows 
that the smoothing process pulled the posterior estimates towards the middle of the distribution, 
increasing the value of the estimates in the lower half, and reducing it for the estimates in the 
higher half. The right-side panel shows that the standard errors created by the smoothing analysis 
tend to be lower in comparison, denoting estimates with higher precision. Thus, because the 
smoothing model estimates each prevalence using the information provided by its neighbors, the 
resulting distribution of prevalence for all regions is less disperse, with the extreme values pulled 
towards the middle.

Regarding the spatial weights for the matrix of neighbors, “B” and “W” are the most used 
styles [14]. In essence, under the “B” style, regions with more neighbors would have a higher 
influence on the results, while under “W” having extra neighbors do not affect the region’s weight.  

Figure 3 Zoom in the HIV-
prevalence maps for each 
country. Kenya in the left, 
Tanzania in the middle, and 
Mozambique in the right panel.

Figure 4 Comparison of 
estimated prevalence (left 
panel) and standard errors 
(right panel) between the 
weighted only and weighted 
and smoothed SAE estimates.
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Thus, the “B” style is a better option when migration patterns and likelihood of contact plays a 
relevant role in the outcome under analysis, as it is the case of HIV transmission [15]. Nevertheless, 
we performed separate analyses with both styles obtaining the same results for the posteriors and 
the standard deviation. We decided in favor of the “B” style given its theoretical advantages over 
the alternative.

According to Figure 5, even though the weighted-only model includes a correction for the 
sampling methodology, the resulting estimates for 4 regions are still not significantly different 
from zero; i.e., the 95% credibility intervals of these estimates include zero. This demonstrates an 
important advantage of the smoothing process: by shrinking the estimates towards the mean, 
it eliminates prevalence estimates non-statically different from zero. Further, it exemplifies 
the difference between the observed and the empirical prevalence [6]. The lack of cases in a 
cluster does not mean that there are no cases in that geographical area. Hence, surrogating the 
estimated risk from adjacent areas is imperative to estimate a prevalence closer to the real risk 
of infection for HIV.

Our estimates are systematically lower compared to previous analysis that have mapped the 
prevalence of HIV in sub-Sharan Africa [16], which is due to the granularity of the data used for 
the analysis. Dwyer-Lindgren et al. collected 38,897 data points in 134 seroprevalence survey and 
sentinel surveillance of antenatal care clinics for a total of 46 countries. Further, they gathered 
information from a 17-year period. Given this, the analytical process can smooth the estimates 
across geographic and temporal units and provide better estimates. Additionally, Dwyer-Lindgren 
et al calibrated the model using national estimations from the Global Burden of Disease [17], 
which provides an additional level of external validity but also introduces more bias in the analysis. 
Nonetheless, the estimated credibility intervals for both studies overlap in all cases for which 
a comparison was possible, and more importantly, the results of both studies are consistent 
regarding which regions within countries have the highest prevalence.

The objective of this study was to present reliable, local prevalence information to inform policy 
decision in the context of optimize resource allocation. In that regard, the temporality of the data 
is not as important since the absolute numbers can change but the relative risk is less likely to 
change over time. Second, our methodology is in concordance with both the nature of the data – 
by including a correction due to the sampling design – and the epidemiology rationale – by using 
a smoothing process to limit the probability of having prevalence equal to zero and modeling the 
outcome in each region as part of a bigger area, rather than in isolation.

This study is not without limitations. First, the data that we used were collected between 2007 
and 2009. Hence, the picture that our estimates present is likely outdated considering how fast 
the HIV epidemic variables move over time. We chose the phase DHS-V because that was the 
only phase in which our sub-set of countries had both HIV and geospatial information. Second, 
although socioeconomic and demographic variables influence the prevalence of HIV [18, 19] and 

Figure 5 Error bars for the 
weighted smoothed SAE 
estimates and the naïve (direct) 
ones.
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these variables are likely spatial correlated, our model did not include covariates. The main reason 
was the lack of an individual identifier between the HIV data and other DHS surveys to match 
the datasets.

CONCLUSIONS
Our results are based on statistically appropriate methods that allowed us to obtain an accurate 
visual representation of the HIV prevalence in the subset of African countries we chose. These 
results can help in identification and targeting of high-prevalent regions to increase the supply of 
healthcare services to reduce the spread of the disease and increase the health quality of PLWHIV.

This study builds on secondary publicly available data and generates reliable estimates that 
can be used to target interventions. This creates an important opportunity to apply the same 
methodology in other settings, where data might be scarce and resources to supplement data 
collection unavailable.
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•	 Supplemental Material. The Supplemental Material contains the estimated prevalence and 
95% credible intervals for each region in the three countries analyzed: Kenya, Tanzania, and 
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