
COLLECTION:  

ENVIRONMENTAL 

IMPACTS ON INFECTIOUS 

DISEASE

REVIEW

CORRESPONDING AUTHOR:

Paul Jagals

Children’s Health and 
Environment Program, 
Child Health Research Centre, 
The University of Queensland, 
Australia

p.jagals@uq.edu.au

KEYWORDS:
Environmental Health Risk 
and Impact Assessment; 
System Dynamics; Causal 
loop diagrams; Precision 
Environmental Public Health

TO CITE THIS ARTICLE:
Jagals P, Kim I, Brereton 
C, Lau CL. Assessment of 
Environmental Impacts on 
Health: Examples from the 
Pacific Basin. Annals of Global 
Health. 2022; 88(1): 92, 1–9. 
DOI: https://doi.org/10.5334/
aogh.3671

Assessment of 
Environmental Impacts 
on Health: Examples from 
the Pacific Basin

PAUL JAGALS 

INJEONG KIM 

CLAIRE BRERETON 

COLLEEN L. LAU 

ABSTRACT
Assessing environmental impacts on health in the Pacific Basin is challenged by significantly 
varying data types – quantities, qualities, and paucities – because of varying geographic 
sizes, environments, biodiversity, ecological assets, and human population densities, 
with highly varied and unequal socio-economic development and capacity to respond 
to environmental and health challenges. We discuss three case-based methodological 
examples from Pacific Basin environmental health impact assessments. These methods 
could be used to improve environmental health evidence at all country and regional 
levels across a spectrum of big data availability to no data. These methods are, 1) a risk 
assessment of airborne particulate matter in Korea based on the chemical composition of 
these particulates; 2) the use of system dynamics to appraise the influences of a range of 
environmental health determinants on child health outcomes in remote Solomon Islands; 
and 3) precision environmental public health methodologies based on comprehensive 
data collection, analyses, and modelling (including Bayesian belief networks and spatial 
epidemiology) increasing precision for good environmental health decision making to 
prevent and control a zoonotic disease in Fiji Islands. We show that while a common 
theme across the three examples is the value of high quality and quantity data to support 
stronger policy decisions and appropriate prioritizing of investment, it is also clear that 
for many countries in the Pacific Basin, sufficient data will remain a challenge to inform 
decision makers about environmental impact on health.
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INTRODUCTION
The impacts of environmental conditions, agents, and states on health (we also refer to this as 
environmental health), are often easy to conceptualise (environmental determinants of health). 
It generally is, however, much more difficult to find sufficient environmental health evidence to 
sway societies into action to prevent environmental hazards and exposures as well as promote 
environmental health. This challenge results from our limited abilities to make sense of complex 
relationships in and between the major domains of human society – summarised in health, 
environment, social, economic, and technical (HESET) domains [1].

Half of the world’s population live in countries that have a direct proximity to the Pacific Ocean 
(commonly referred to as the Pacific Basin). These countries and their societies vary significantly 
across spectrums of geographic sizes, environments, biodiversity, ecological assets, culture, 
lifestyle, and human population densities, with highly varied and unequal socio-economic 
development and capacity to respond to environment and health challenges [2].

Environmental determinants of health for these populations are therefore very heterogenous 
and not evenly distributed, most often not comprehensively measured and modelled, and not 
managed according to a common blueprint to ensure healthy environments for healthy people 
in the region [3, 4]. Large‑scale environmental conditions and states such as natural disasters 
and climate change have globally significant and visible environmental influences and impacts 
on health. These conditions receive advocacy and attention at broader and higher levels and are 
therefore generally better understood. There are, however, more subtle and local environmental 
states, conditions, and agents driving the occurrence of infectious and non-communicable 
diseases. These drivers are often misunderstood and often underestimated, leading to societal 
actions that are more likely to exacerbate these negative environmental influences than prevent 
them.

Examples of local environmental agents, conditions, and states are health-related air quality as 
well as water / food safety and security. These are not comprehensively and equally measured 
in the context of potential human health impact across Pacific Basin countries. Some countries 
collect large quantities of high-quality data which enables analyses, interpretation, and good 
evidence syntheses for sound decision-making on environmental health actions [5]. For most 
Pacific Basin countries – especially the small island states of the Pacific – a paucity of data and 
limited understanding of the impacts and unintended consequences of actions can lead to poor-
quality decision-making about environmentally-protective socio-economic development [1, 6, 7].  
Assessment methods are called for that can accommodate good, as well as limited data drawn 
from multiple (HESET) sectors of society.

In this report, we discuss three case-based methodological examples from the Pacific Basin to 
assess environmental impacts on health. These methods could be used to improve environmental 
health evidence at all country and regional levels across a spectrum of availability of big data to 
sparse data.  Firstly, we present a health risk assessment based on the chemical composition of 
airborne particulate matter in Korea to provide a clearer picture of health risk posed by such an 
environmental agent – in this example – airborne particulate matter. Secondly, we demonstrate 
the use of systems science methods that offer the potential to combine many different 
and heterogenous sources, levels, and types of data as well as options for incorporating data 
based on knowledge, opinions, and judgements in situations where empirical data are scarce. 
We present an example of the use of system dynamics to appraise the influences of a range 
of environmental health determinants on child health outcomes in remote Solomon Islands. 
Finally, using an example of prevention and control of a zoonotic disease (Leptospirosis) in Fiji, 
we discuss the concept of precision environmental public health to show how comprehensive 
data collection (again – from heterogenous sources, levels, and types), analyses, and modelling 
(including Bayesian belief networks and spatial epidemiology) could increase the precision of good 
environmental health decision making.
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ASSESSMENT OF HEALTH RISK POSED BY AIRBORNE ULTRAFINE 
PARTICLES IN AN URBAN ENVIRONMENT
Health-related air quality has long been a problem for populations in countries in the proximity 
of the Pacific Basin [8]. More recently, an acute awareness is also developing about the impact of 
air quality on the health of people in the more remote Pacific Island Countries and Territories [9]. 
A popular indicator of air quality is mass-based concentrations of health-relevant particulates in 
the ambient and household air. In larger Pacific Basin countries, with the capabilities to measure 
air quality on a large scale, epidemiological assessment using big data sets have provided 
evidence that respiratory tract infections are linked to exposure to poor-quality air. For the Pacific 
Island Countries and Territories, large scale measurement of air quality is not yet an established 
environmental public health practice [9, 10].

Furthermore, getting proper insights into the health significance of ambient and indoor particulate 
matter especially requires more than just measuring its presence in the air. Increasing evidence 
suggests that the toxicity of fine dust particles (PM2.5) is linked to specific components of the 
particles rather than their mass [11]. However, our understanding of the chemical composition 
of PM2.5 and the health risk this poses is currently limited. Particles in air, especially those released 
from combustion processes (industry, energy generation, motorised vehicles), contain metals, 
polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated 
biphenyls (PCBs) amongst others – all of which can be detrimental to health if present in hazardous 
concentrations in inhaled air. These particles can increase the risk of disease such as respiratory 
infections and cancer. Kim et al. [11] used a toxicologic risk assessment approach to understand 
these component parts within the particles to determine the health risks posed by PM2.5 (Figure 1).

A Health Risk Assessment (HRA) approach was used to structure the assessment of risk posed by 
exposure to the hazardous components of the PM2.5 airborne particulates sampled for this study.  
HRA provides the scientific evidence for the development of risk management plans [12].

To assess health risk posed by airborne PM2.5, data about the concentration of toxic compounds 
in the particles and their toxicity value are essential to determine the likely response to the 
dose of these substances during exposure. Whilst toxicity information for a substance is readily 
available through several databases such as Integrated Risk Information System (USEPA) [13], the 
identification and quantification of the toxic compounds within PM2.5 particles require scientific 
effort (monitoring / sampling, chemical analysis etc.). For example, Kim et al. [11] conducted PM2.5 
sampling for 21 weeks in Gwangju, Korea, and analysed the concentration of 20 metals and 114 
organics in the sampled particles. The data were used to assess risk posed by PM2.5, as well as 
apportion the sources of PM2.5 to provide insights as to the likely sources of pollution. Following 
these scientific processes, they suggested that Mn, BaP, Pb, As, and Cd contribute most to the 
health risk posed by the particles. They also provided the scientific evidence to target the emission 
sources that should be regulated to reduce the PM2.5 risk. In the case of Gwangju, Korea, the 

Figure 1 Flow chart of PM2.5 
Health Risk Assessment.
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emission reduction from industrial activities, oil combustion, and gasoline exhaust were proposed 
to be most effective in terms of risk reduction compared to other emission sources. Air pollutants 
are emitted through various emission sources, and it might be socio-economically impossible to 
regulate all sources. The evidence provided by studies like this can guide decision makers in the 
management of emission sources by prioritizing them based on human health risk, and effectively 
provide large social benefits at a lower cost. This approach can also provide useful information for 
other environmental states, agents, and conditions to decision makers for effective management 
of environmental health risk [14].

SYSTEM SCIENCE 
Environmental health can be viewed as a complex system, with interconnected elements which 
interact to produce non-linear effects, which are different from the mostly linear effects of the 
individual elements. Systems science, the application of scientific methods to understand complex 
systems, provides insights into how these systems work [1, 15]. We use its structured methods 
to explore and understand how component parts of the environmental health system connect 
and interact, thus increasing our capability to understand complex problems, provide evidence, 
and design workable solutions. Causal assessment of environmental conditions, agents and 
states, socio-economic factors, and their relationship with, and/or risks to health and wellbeing 
is hampered by a paucity of data. System dynamics is a systems science approach which can be 
applied to partially compensate for this, blending available data with expert opinion [15].

Solomon Islands is a remote and extremely environmentally vulnerable Least Developed Country 
in the South Pacific Ocean of the Pacific Basin. The country faces challenges of poverty, population 
growth, rapid urbanisation with lagging infrastructure development, increasing pollution, and 
climate change. Forty percent of the population is under 16 years old [16]. We used a system 
dynamics approach [17] in Solomon Islands to identify cause-effect relationships linking a selected 
range of environmental determinants of children’s health outcomes, and then to simulate different 
scenarios and quantify the effects of potential interventions designed to improve those outcomes.

Firstly, a causal loop diagram was developed (Figure 2) showing significant causal associations 
and identifying feedback loops. Feedback, or circular causality, occurs when a set of causal 
associations connect to make a closed path. Feedback loops are either reinforcing, generating 
exponential growth or decline over time, or balancing, where one effect counteracts another to 
reach an equilibrium. Most feedback loops in this diagram make links between children’s health 
outcomes and multiple HESET domains and most, denoted by the “R” symbols, are reinforcing.

Figure 2 Causal Loop Diagram – 
Environmental, economic and 
social domains intersecting 
and reinforcing to influence 
children’s health outcomes in 
Solomon Islands [1].
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Secondly, a quantitative dynamic model was built – using the system structure defined by the 
causal loop diagram – to simulate different scenarios (Figure 2). Simulations included investments 
in areas such as water and sanitation infrastructure, education, and family planning. They 
also included simulation of different global CO2 emissions scenarios. The simulations enabled 
comparison of the projected effects of different socio-economic environmental scenarios on 
children’s health.

One of the many reinforcing loops in this complex system is the adverse impacts of air quality 
on health in Solomon Islands. Figure 3 shows reinforcing loop R9 (shown in bold in Figure 2) 
which illustrates the links between biomass fuel use, child morbidity and mortality, and adult 
morbidity and premature mortality, which reinforces poverty due to a reduced ability to contribute 
economically.  Poverty in its turn reduces access to clean fuel and reinforces the cycle.   

Balancing loop B1, shown in bold in Figure 2, shows that poverty reduces the ability to buy/use 
vehicles which reduces pollution related to automobile or marine fuel consumption, which reduces 
ambient air pollution, a cause of respiratory disease. Conversely, reducing poverty increases 
respiratory disease. These two loops illustrate the complexity of environmental health decisions; 
poverty is at the root of many of the socio-economic causes of health outcomes, but when 
economic state improves, new environmental health hazards are created.

Solomon Islands survey data [18] show that 33% of the population have no access to improved 
water supplies, 67% have no sanitation, 25% have no electricity (90% cook on wood fires), leading 
to a range of environmental hazards which can impact on health. Availability of basic drinking 
water services has declined gradually over the last 15 years as earlier water investments have 
reached the end of their lifespan, exacerbated by increasing demand from a growing population 
[19]. Simulation modelling shows that population growth is outpacing water and sanitation 
infrastructure investment and putting pressure on general health and education investment. 
It highlights priority data gaps such as causes of child mortality which must be addressed to 
deliver an effectively targeted approach to supporting and protecting children’s health in Solomon 
Islands. The simulation implies that, based on the trends in the structural causes of children’s 
morbidity and mortality in Solomon Islands, children’s health is not improving, in contrast to global 
trends, but there is insufficient data to validate this finding. The model shows that limited access 
to modern family planning facilities, which are currently available to less than 30% of families 
[18], is contributing to population growth. Without significantly increased investment in water and 
sanitation infrastructure in both rural and informal settlements to support a growing population, 
child mortality rates will not improve in the next 10 years. Even with investment, Solomon Islands 
is unlikely to meet health related Sustainable Development Goal targets due to the lead times 
required for health outcomes to improve [20].

Figure 3 Sample air quality 
causal loop from Figure 2.
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PRECISION ENVIRONMENTAL AND PUBLIC HEALTH
Infectious diseases are responsible for significant disease burden in the Pacific Islands Countries 
and Territories. Transmission and outbreaks are strongly driven by multiple interrelated 
environmental and socio-demographic factors (Figure 4), as well as the complex interactions 
between humans, animals, and vectors. Challenges in the prevention and control of infectious 
diseases include poor quantification of disease burden, poor evidence about how best to manage 
social and environmental risk factors and drivers, and limited evidence-based strategies for 
interventions [21]. 

Environmental drivers of disease transmission vary between diseases, differ between times of 
emergence, outbreaks, and during the last stages of elimination programs where prevalence 
has reached very low levels. Effective disease prevention and control strategies depend critically 
on efficient data collection and good surveillance systems, so that appropriate interventions 
can be implemented at the right place and time. Innovative approaches are needed to 
provide early warning of disease outbreaks, e.g. sentinel surveillance, improved environmental 
monitoring to provide indicator signals, and the use of geospatial tools to identify and predict 
hotspots [22].

Precision public health aims to make optimal use of limited public health resources by better 
stratification of populations and diseases, so that more precise interventions can be delivered 
at the right time and right place to the right population [23]. To achieve these goals, innovative 
methods and cutting-edge technologies are used to measure disease, pathogens, exposures, 
behaviours, and susceptibility more accurately in populations. This includes improving the volume, 

Figure 4 Infectious disease 
transmission is strong driven by 
interactions between humans, 
animals, and the environment. 
The interactions are in turn 
influenced by multiple 
interrelated environmental and 
sociodemographic factors.
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variety, timeliness, and validity of data. Furthermore, advances in data science and analytics are 
used to improve understanding of disease risk factors and drivers, thereby enabling more precise 
interventions in terms of time, place, and populations. Models can also help predict the timing and 
location of disease emergence and outbreaks, enable analysis of complex scenarios, and support 
evidence-based decision making. 

Leptospirosis is a zoonotic disease with strong environmental drivers of transmission and 
causes very high disease burden in the Pacific Islands [24]. Examples of studies that have 
provided evidence to improve the precision of prevention and control strategies for leptospirosis 
in Fiji include improving risk stratification through eco-epidemiological studies [25], Bayesian 
network modelling [26], and spatial analyses such as geographically weighted regression, 
spatial Bayesian networks, and predictive risk mapping [27, 28, 29]. These studies integrated 
multiple sources of data (including human and animal surveys, census, climate, agriculture) 
and used a variety of advanced analytic methods to better stratify disease burden and risk 
factors between subpopulations and identify high risk locations. Knowledge about differences 
in the risk of leptospirosis between age groups, gender, ethnicity, and occupations enables more 
specific targeting of prevention and control strategies, including health information messaging. 
Using a geographically weighted regression model, the studies showed that even in the small 
islands of Fiji, environmental drivers of leptospirosis transmission varied significantly over space 
[27] Significant environmental drivers included livestock density, rainfall, and poverty but the 
relative importance of these drivers varied between regions. Knowledge about these differences 
allow prioritisation of public health interventions that are most likely to be effective in that 
region. 

DISCUSSION AND CONCLUSION
A common theme across all three examples in this paper is the value of data. The examples 
demonstrated a range of environmental health assessment methods that could be applied 
depending on the quality and quantity of data available – ranging from high resolution data 
collected to specifically address environmental health questions, to situations where there 
was little or no data. It is also clear that for many countries in the Pacific Basin, collecting new, 
especially local data will remain a challenge.

The examples of structured assessment methods (risk assessment, system science, and precision 
environmental public health) demonstrate that many approaches can be used to improve the 
knowledge required to make good environmental health decisions, while optimising what data 
are available. These types of assessments and evidence will support stronger policy decisions and 
more precise and appropriate prioritisation of environmental health investments.
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