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ABSTRACT
Background: The exposure of pregnant women to multiple environmental pollutants 
may be more disadvantageous to birth outcomes when compared to single-compound 
contaminations.

Objective: This study investigated the mixed exposures to mercury, manganese, or lead 
in 380 pregnant Surinamese women. The factors that might be associated with the 
heavy metal exposures and the relative risk of the potential factors to cause the mixed 
exposures were explored. The influencing factors of exposures to mixed contaminants 
assessed were living in Suriname’s rural regions, several parts of which are contaminated 
with heavy metals emitted from artisanal and small-scale gold mining and agricultural 
activities; the consumption of potentially contaminated foods; advanced maternal age; 
as well as a relatively low formal educational level and monthly household income.

Methods: Descriptive statistics were used to calculate frequency distributions and χ2-
contingency analyses to calculate associations and relative risks (RR) with 95% confidence 
intervals (CI).

Findings: Blood levels of two or three of the heavy metals above public health limits 
were observed in 36% of the women. These women were more often residing in the rural 
regions, primarily consumed potentially contaminated food items, were 35 years or older, 
were lower educated, and more often had a lower household income. However, only 
living in the rural regions (RR = 1.48; 95% CI 1.23–1.77) and a low household income (RR 
= 1.38; 95% CI 1.15–1.66) significantly increased the risk of exposure exceeding levels of 
concern to two or three of the heavy metals (by 48% and 38%, respectively).

Conclusion: More comprehensive pharmacological, ecological, and epidemiological 
studies about exposures to mixed heavy metal contaminations in pregnant women are 
warranted.
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INTRODUCTION
The detrimental impact of heavy metals on pregnant women, their unborn children, and newborns 
has been well-established [1]. For instance, elevated levels of mercury or manganese in the blood 
of pregnant women have been associated with lower birth weight [2, 3], increased maternal blood 
levels of lead with a higher incidence of preterm birth [4], and too high maternal lead and arsenic 
blood levels with a low Apgar score [5, 6]. Pregnant women are particularly at risk of exposure to 
these and other heavy metals in low- and middle-income countries, where policies, legislation, 
and monitoring of residues in agricultural and industrial substances are insufficient [7, 8].

This is also a concern in the Republic of Suriname, an independent country located on the north-
eastern coast of South America. Suriname’s leading sources of subsistence are oil drilling, gold 
mining, agriculture, fishery, and forestry [9], which are mainly carried out in the country’s rural-
interior and rural-coastal regions [10–12]. These activities substantially contribute to the country’s 
gross domestic income [13] but are accompanied by the release into the environment of the toxic 
heavy metals mentioned above [14, 15].

Mercury spillage primarily occurs in the country by its use in amalgamating and extracting gold 
in the widespread small-scale artisanal mining activities [16, 17]. Environmental pollution by lead 
may be attributed to the emission of fumes from lead-containing gasoline and paint products, 
residues from lead-based plumbing, and the application of lead-containing cosmetics [18–21]. 
Exposure of humans and contamination of the environment with manganese may occur during 
the large-scale production of staple foods such as rice, plantains, and cassava because of the 
use of illegal and banned agricultural pesticides and herbicides that contain this compound [22]. 
These compounds are persistent in the environment, accumulate in soils and sediments, and can 
cause damage to humans or inflict harm after entering the food chain [23–25].

We recently conducted a study with 380 pregnant women in Suriname aimed to determine the 
effects of prenatal exposure to mercury, manganese, and lead on birth outcomes [26]. For that 
purpose, an association was sought between levels of heavy metals in the women’s blood samples 
and the occurrence of adverse birth outcomes [26]. The study found no statistically significant 
relationship between maternal blood levels of these heavy metals and stillbirths, preterm births, low 
birth weights, or low Apgar scores [26]. However, a considerable proportion of the women had heavy 
metal blood levels exceeding the reference values of public health concern: 40.5% had mercury 
levels ≥ 3.5 µg/L, 63.9% had manganese levels ≥ 13.0 µg/L, and 21.3% had lead levels ≥ 3.5 µg/dL 
[26]. These findings indicate the need for public health measures to safeguard pregnant Surinamese 
women and their newborns from the harmful effects of exposure to environmental heavy metals.

An important aspect of this issue that deserves more attention is the risk of the simultaneous 
exposure of pregnant Surinamese women and their unborn children to mercury, manganese, and 
lead. That exposure to such mixed contaminations may occur in Suriname is not inconceivable 
when considering their geo-chemo-biological pathways, including their airborne transportation, 
accumulation in soils and sediments, conversion into highly toxic derivatives, and entry into the 
food chain following absorption by fish, vegetables, and staple foods, and presence in freshwater 
resources [22, 23, 27, 28]. Simultaneous exposure to multiple heavy metals may not only be more 
harmful compared to exposure to single metals but may also carry a greater risk for adverse 
birth outcomes. For example, the combination of arsenic, cadmium, mercury, manganese, and 
lead reportedly might increase the risk of congenital heart defects in newborns [29] and the 
occurrence of asthma in young children [30], and newborns whose mothers had been exposed to 
lead, mercury, and cadmium had increased blood pressure levels [31].

With this background, descriptive statistics were applied to assess the frequency of contaminations 
with mercury, manganese, and lead at levels exceeding those of public health concern in the 
group of pregnant women in Suriname mentioned above. The economic activities associated 
with the potential spilling of these compounds mainly take place in Suriname’s rural-coastal and 
rural-interior regions [10–12]; the heavy metals may mainly accumulate in certain species of fish, 
vegetables, and staple foods [23, 25, 28, 32]; and age at delivery, level of education, and household 
have previously been associated with a higher risk for exposure to contaminant mixtures [33–36]. 
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The distribution of these potential risk factors for the mixed contaminants was also assessed using 
descriptive statistics. Finally, bivariate and relative risk analyses were used to explore potential 
associations and calculate relative risk ratios between these factors and the mixed contaminations.

METHODS
STUDY DESIGN AND SETTING

In this study, a group of 380 pregnant Surinamese women who had previously been evaluated for 
a potential relationship between exposure to mercury, manganese, and lead and adverse birth 
outcomes [26] was evaluated for the occurrence of combined heavy metals exposures. These 
women are a subset of the Caribbean Consortium for Research in Environmental and Occupational 
Health (CCREOH) cohort of 1200 pregnant Surinamese women who had been enrolled during 1 
December 2016 to 30 September 2019 in a longitudinal epidemiological study that aims to evaluate 
the impact of environmental contaminants on birth outcomes and neurodevelopment of their 
children [37]. The CCREOH study (also known as the MekiTamara Study) was ethically approved by 
the Institutional Review Board of the Ministry of Health of Suriname (protocol number VG 023-14) 
and the Institutional Review Board of Tulane University, New Orleans, LA, USA (protocol number 83 
093). All participants voluntarily entered the study, agreed to provide a venous blood sample, and 
provided informed written consent after a thorough explanation of the study’s purpose by trained 
research personnel who documented and witnessed the process. Participants who were under the 
age of 18 years were assented after the guardian(s) provided consent.

CLASSIFICATION OF COMBINED HEAVY METALS EXPOSURE

During the first or second trimesters, whole blood samples were collected from study participants. 
Blood levels of three heavy metals (mercury, manganese, and lead) had previously been 
determined and were categorized as either “low” or “high” based on public health cut-off levels.
[26] For mercury, blood levels < 3.5 µg/L were considered “low” and those ≥ 3.5 µg/L were 
considered “high” [38]. For manganese, blood levels < 13.0 µg/L were considered “low” and those 
≥ 13.0 µg/L “high” [39]. Blood levels of lead were considered “low” if < 3.5 µg/dL or “high” if ≥ 3.5 
µg/dL [40]. Based on these cut-off points, the occurrence of the various “high-low” heavy metal 
combinations was recorded for each participant and subsequently categorized into four groups of 
combined heavy metals exposure: all three low levels; two low levels, and one high level; one low 
level and two high levels; all three high levels.

MATERNAL CHARACTERISTICS

Information on maternal characteristics was collected at enrollment in the study by trained 
recruiters through face-to-face interviews using encrypted iPads, following the CCREOH’s study 
protocol [37]. Maternal characteristics deemed relevant to the current study included the region of 
residence, consumption of certain foods, maternal age at delivery, educational level, and monthly 
household income.

The region of residence was first categorized as urban-coastal, rural-coastal, and rural-interior 
according to the classification of the Surinamese General Bureau of Statistics [9] and subsequently 
as urban versus rural region. Foods that might represent sources of heavy metal contamination 
were fish, leafy vegetables, as well as staple foods such as rice, plantains, and cassava [41, 42]. 
Maternal age at delivery was categorized into age groups 16–34 years and 35 years and older; 
educational level as none or primary education, and secondary or tertiary education; and monthly 
household income as USD < 75 and ≥ USD 75. These variables were taken as proxies for the 
socioeconomic status of participants [43].

STATISTICAL ANALYSIS

Descriptive statistics were calculated for combinations of heavy metals exposure (Table 1) and 
maternal characteristics (Table 2). Contingency tables were constructed to explore associations 
between maternal characteristics and heavy metal combinations (Table 3). Associations between 
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pairs of variables were evaluated with the χ2-test and were expressed as p-values applying Fisher›s 
exact test for sensitivity adjustment. Relative risks (RR) with 95% confidence intervals (CI) were 
calculated if associations were significant. P values < 0.05 were considered statistically significant. All 
analyses were done using the Statistical Package for Social Sciences (SPSS version 25 for Windows).

RESULTS
DISTRIBUTION OF HEAVY METAL CONTAMINATIONS

Table 1 presents the prevalence of heavy metal combinations in the study population. High blood 
levels of all three heavy metals were found in 32 of the 380 participants (8.4%). More than one-
quarter (104 of 380; 27.3%) had two heavy metals at high levels in their blood, and slightly less 
than half of the participants (174 of 380; 45.8%) had one heavy metal at high levels in their blood. 
Only 70 participants (18.4%) had low levels of all three heavy metals. Thus, more than one-third 
of the women examined (136 of 380; 35.8%) had concentrations of two or three heavy metals in 
their blood that surpassed public health cut-off points.

MATERNAL CHARACTERISTICS

As shown in Table 2, the majority of participants (66.1%) were from Suriname’s urban-coastal 
region, but 129 (or about one-third) were from either the rural-coastal or the rural-interior region. 
Furthermore, the diet of 94.9% of the women included fish, leafy vegetables, and at least three 
types of staple food. About 15.3% of the participants were aged above 34 years, while 17.5% 
had no or only primary education, and less than one-third (31.2%) had a monthly household 
income of less than USD 75. Thus, approximately one-third of the women lived in a region with 
potential heavy metal pollution, virtually all consumed diets that could have been contaminated 
with heavy metals, the majority was in the mid-reproductive age, and most had a relatively high 
socio-economic status.

NUMBER OF HEAVY METALS ABOVE 
PUBLIC HEALTH CUT-OFF LEVELS

HEAVY METAL 
COMBINATIONS

NUMBER OF WOMEN (% OF 
TOTAL)

0 Hg Low| Mn Low| Pb Low 70 (18.4%)

1 Hg High| Mn Low| Pb Low 37 (9.7%)

Hg Low| Mn High| Pb Low 131 (34.5%)

Hg Low| Mn Low| Pb High 6 (1.6%)

2 Hg High| Mn High| Pb Low 61 (16.1%)

Hg High| Mn Low| Pb High 24 (6.3%)

Hg Low| Mn High| Pb High 19 (5.0%)

3 Hg High| Mn High| Pb High 32 (8.4%)

Table 1 Number of heavy metals 
above public health cut-off levels 
in the pregnant Surinamese 
women included in the 
current study, the heavy metal 
combinations, and the number 
of women with a blood metal 
level combination (n = 380).

CHARACTERISTICS OF WOMEN EXPOSED TO HEAVY METAL MIXTURES NUMBER OF WOMEN (% OF TOTAL)

Residing in the urban region 251 (66.1%)

Residing in the rural (coastal and interior) region 129 (33.9%)

Consumption of fish, leafy vegetables, and three or more staple food 356 (94.9%)

Aged 16–34 years 322 (84.7%)

Aged 35 years and older 58 (15.3%)

Primary or no formal education 66 (17.5%)

Secondary or tertiary education 312 (82.5%)

Household income < USD 75 112 (31.2%)

Household income ≥ USD 75 247 (68.8%)

Table 2 Distribution of maternal 
characteristics in the study 
population (n = 380).



5Sewberath Misser et al.  
Annals of Global Health  
DOI: 10.5334/aogh.4402

ASSOCIATIONS BETWEEN MATERNAL CHARACTERISTICS AND HEAVY METAL 
COMBINATIONS IN BLOOD

In order to assess potential associations between maternal characteristics and mercury, 
manganese, and lead blood metal combinations, bivariate analyses were conducted. The results 
from these analyses are presented in Table 3. Region of residence, educational level, and monthly 
household income were statistically significantly associated with heavy metal combinations (p < 
0.001), while no statistically significant associations were found for maternal age at delivery (p 
= 0.253) and the consumption of fish, leafy vegetables, and staple foods (p = 0.908) with heavy 
metal combinations in blood.

Low levels of all three heavy metals were statistically significantly more often noted in residents 
of the urban region when compared to those of the rural regions (22.7% vs. 10.1%; p < 0.001), in 
women who had a secondary or a tertiary education when compared to those with only primary 
education or who had no formal education at all (22.1% vs. 1.5%; p < 0.001), and in women who 
had a household income of 75 USD or more when compared to those with an income less than 75 
USD (20.6% vs. 11.6%; p < 0.001).

Conversely, two or three high levels of mercury, manganese, or lead were statistically significantly 
more often observed in women residing in the rural regions when compared to those living in the 
urban region (48.8% vs. 29.1%; p < 0.001), women who had only a primary education or no formal 
education at all when compared to those with a higher education (72.7% vs. 27.9%; p < 0.001), 
and in women with a household income of less than 75 USD when compared to those with a 
higher income (50.9% vs. 29.6%; p < 0.001).

Next, the statistically significant associations observed in the previous paragraph were further 
explored by calculating the RRs by comparing two or three high metal combinations against no 
high metal combinations. Education level was excluded from this calculation as the data did not 

CHARACTERISTICS BLOOD METAL COMBINATIONS  χ2- TEST 
RESULT*

0 ≥ PUBLIC 
HEALTH 
LEVEL

1 ≥ PUBLIC 
HEALTH 
LEVEL

2 OR 3 ≥ 
PUBLIC 
HEALTH 
LEVEL

TOTAL

NUMBER 
(%)

NUMBER 
(%)

NUMBER 
(%)

NUMBER 
(%)

Region of Residence     

Urban 57 (22.7%) 121 (48.2%) 73 (29.1%) 251 (100%) 17.681,

p < 0.001Rural (coastal and interior) 13 (10.1%) 53 (41.1%) 63 (48.8%) 129 (100%)

Dietary habits     

Consumption of fish, leafy vegetables, 
and 3 or more types of staple food

66 (21.0%) 161 (45.2%) 129 (36.2%) 356 (100%) 0.300, p = 
0.908

Else 4 (18.5%) 9 (47.4%) 6 (31.6%) 19 (100%)

Maternal age at delivery     

16–34 years 57(17.7%) 153(47.5%) 112 (34.8%) 322 (100%) 2.696, p = 
0.253

35 years and older 13 (22.4%) 21 (36.2%) 24 (41.4%) 58 (100%)

Educational level  

Primary or no education 1(1.5%) 17(25.8%) 48(72.7%) 66(100%) 50.579,

p < 0.001Secondary or Tertiary 69(22.1%) 156(50.0%) 87(27.9%) 312(100%)

Household income(USD)  

<75 13(11.6%) 42(37.5%) 57(50.9%) 112(10%) 15.348,

p < 0.001> = 75 51(20.6%) 123(49.8%) 73(29.6%) 247(100%)

Table 3 Associations between 
maternal characteristics and 
heavy metals combination (N 

= 380).

*Fisher’s exact test, p < 0.05, is 
considered significant.
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meet the sample size criteria. As shown in Table 4, living in the rural (coastal and interior) regions 
(RR = 1.48; 95% CI 1.23–1.77) and having a lower household income (RR = 1.38, 95% CI 1.15–1.66), 
increased the risk of exposure to two or three high heavy metals during pregnancy with 48% and 
38% respectively. Thus, the risks of having a combination of two or three blood heavy metals 
above the public health cutoff points are statistically significantly higher (48–38%) in women living 
in the rural (interior and coastal) regions and in women with a low household income.

DISCUSSION
The exposure of pregnant women to combinations of heavy metals may present a greater health 
risk for adverse birth outcomes when compared to single-agent contaminations [44, 45], requiring 
increased public health vigilance and public health measures. The current study has assessed the 
distribution of combined contaminations with mercury, manganese, and lead in Suriname, the 
potential risk factors of the mixed contaminations (living in a specific part of Suriname, dietary 
habits, maternal age, and socio-economic status), as well as the relative risks of these factors to 
cause combined heavy metal exposures in a group of pregnant Surinamese women. Our results 
showed that more than one-third of the 380 women included in the study had two or three 
heavy metals in their blood at concentrations above public health levels of concern. Furthermore, 
a considerable proportion of the study population displayed the potential risk factors for mixed 
heavy metal exposures. Finally, living in Suriname’s rural areas, as well as having a low household 
income, might increase the risk for multiple exposures above levels of concern, whereas the 
consumption of fish, leafy vegetables, and staple foods, as well as older maternal age, did not.

The simultaneous exposure to two or three heavy metals at levels above recommended public 
health action levels—including mercury, manganese, and lead—has been reported before in, 
among others, Japan [46], the USA [47], and China [29]. In line with the results from the current 
study, the investigators suggested that education and low income might represent potential risk 
factors for exposure to multiple contaminants [46, 48]. However, whereas these investigators also 
suggested that fish consumption and maternal age might represent potential risk factors, this did 
not seem to be the case in the current study.

The increased risk of exposure to multiple contaminants of pregnant women from the rural areas 
of Suriname with two or three heavy metals might be attributable to their exposure to the noxious 
emissions from artisanal gold mining and agricultural activities in particularly these parts of the country 
[49, 50]. Indeed, the consumption of fish from polluted areas represented an important risk factor 
for multiple heavy metal intoxications in various parts of the world [46–48]. Furthermore, pesticide 
residues and heavy metal contaminations of soil and produce have been traced back to large-scale 
agricultural activities in various countries, including China [51]. The precise factors contributing to a 
higher risk of contaminations in the rural areas must be investigated in future studies.

Low education and low income (as well as other indicators of an unfavorable socioeconomic status) 
may also represent potential risk factors for multiple heavy metal exposures above public health 
levels of concern. This possibility has been reported in Puerto Rico [52] and Uruguay [53]. Low 

Table 4 Relative risk (95% CI)) of 
risk factors (region of residence, 
and household income) for 2 
or 3 blood metal combinations 
above public health levels in 
pregnant women.

*Fisher’s exact test, p < 0.05, 
is considered significant.

DETERMINANTS BLOOD METAL COMBINATIONS TOTAL RELATIVE RISK 
(95% CI)

χ2- TEST 
RESULT*

2 OR 3 ≥ PUBLIC 
HEALTH LEVEL

0 ≥ PUBLIC 
HEALTH LEVEL

NUMBER % NUMBER %

Region of residence 

Rural (coastal and 
interior)

63 82.9% 13 17.1% 76 1.48 (1.23 – 1.77) 17.691, 
p < 0.001

Urban 73 56.2% 57 43.8% 130 1 (reference)

Household income(USD)

<75 57 81.4% 13 18.6% 70 1.38 (1.15 – 1.66) 15.348, 
p < 0.001

> = 75 73 58.9% 51 41.1% 124 1 (reference)
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education and low income may limit access to and consciously choosing healthy and safe food 
[54, 55] and may be associated with inadequate knowledge about the proper use of pesticides 
[56, 57]. These characteristics have also been associated with the inability to recognize potentially 
contaminated dietary items [58], a greater risk of occupational exposure to toxic substances [59, 
60] and insufficient financial means to take proper protective measures [56, 57].

Surprisingly, the consumption of potentially contaminated fish, leafy vegetables, and staple foods 
did not seem to carry a statistically significant risk for mixed exposure to mercury, manganese, 
and/or lead in the current study. Indeed, a previous study detected high mercury concentrations 
in blood and hair samples of inhabitants from villages in Suriname’s interior [61, 62], whose 
main protein source is predatory fish that consume mercury-contaminated prey [23]. However, 
another report identified pesticide residues in vegetables that are widely consumed by pregnant 
Surinamese women that, fortunately, were below the cut-off points of the European Union [32]. 
This has recently been corroborated by Alcala and coworkers [63], who detected traces of pesticide 
metabolites in the urine of pregnant Surinamese women, possibly following contamination through 
food intake, dermal contact, or inhalation. It is important to determine whether urinary levels of 
heavy metals are also limited to traces rather than potentially dangerous concentrations in the 
women evaluated in the current study when considering that the majority of them consumed 
diets that potentially contained multiple heavy metals.

The absence of a statistically significant association between the older age of pregnant women 
and a higher risk of exposure to mixed heavy metal contaminations noted in the current study 
is not in agreement with the results from previous studies [46–48]. For instance, in a Chinese 
investigation that specifically explored the occurrence of heavy metals in different age groups, 
higher concentrations were found in middle-aged women when compared to younger women 
[64]. This might be attributable to the increasing susceptibility of the human body to environmental 
exposures with increasing age [65], particularly in individuals suffering from comorbidities such 
as hypertension [66]. The discrepancy between the data from the literature and those from the 
current study may be attributable to the relatively small size of the study population that, in 
addition, mainly consisted of women of reproductive age.

In summary, the results from the current study suggest that particularly women living in the rural 
areas of Suriname and women with a low household income were at risk for exposure to combined 
heavy metal contaminants. However, despite suggestions about the sources of the mixed heavy 
metal contaminants (particularly widespread artisanal gold mining and large-scale agriculture), 
the precise nature of the geo-chemo-biological pathways involved in the contaminations, and their 
combined pharmacological effects on humans, including pregnant women and their offspring 
are not clear [67, 68]. The small sample size of the study population also makes it difficult to 
extrapolate the findings to the general population.

Nevertheless, the results from the current study emphasize the need for improved insights into 
exposure to mixed heavy metal contaminants. Notably, such exposures (including those with 
mercury, manganese, and/or lead) are also believed to be involved in the development of chronic 
ailments such as Parkinson’s disease, hypertension, and chronic kidney disease [66, 69, 70], 
presumably by perturbing metal homeostasis in the body and causing cell degeneration [71, 72]. 
So far, studies on their effects on pregnant women, their unborn children, and their newborns are 
limited. Therefore, it is important to identify the precise geo-chemo-biological pathways involved 
in these phenomena and to understand their toxicokinetics and toxicodynamics better in order to 
implement the proper public health interventions.

CONCLUSION
About one-third of the 380 pregnant Surinamese women evaluated in the current study had 
a combination of mercury, manganese, and/or lead in their blood at levels exceeding those of 
public health concern. Women living in the rural areas of Suriname and women who had a low 
household income ran a risk of 38–48% being exposed to one of these heavy metal combinations. 
More comprehensive pharmacological, ecological, and epidemiological studies about mixed heavy 
metal contaminations of pregnant women are warranted.
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