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ABSTRACT
Background: This article summarises a session from the recent Pacific Basin Consortium 
for Environment and Health Focus meeting on Environmental Impacts on Infectious 
Disease. 

Objective: To provide an overview of the literature underpinning the presentations from 
this session.

Methods: References used in developing the presentations were obtained from the 
presenters. Additional references were obtained from PubMed using key words from the 
presentations.

Findings and Conclusions: 

1.	 The Hokkaido longitudinal children’s study has found that exposure to chemicals in 
early life, such as persistent organic pollutants and per/polyfluorinated compounds, 
is associated with a range of immunological outcomes such as decreased cord 
blood IgE, otitis media, wheeze, increased risk of infections and higher risk of food 
allergy. 

2.	 Epidemiological evidence links exposure to poor air quality to increased severity and 
mortality of Covid-19 in many parts of the world. Most studies suggest that long-
term exposure has a more marked effect than acute exposure. 

3.	 Components of air pollution, such as a newly described combustion product known 
as environmentally persistent free radicals, induce oxidative stress in exposed 
individuals. Individuals with genetic variations predisposing them to oxidative stress 
are at increased risk of adverse health effects from poor air quality.

*Author affiliations can be found in the back matter of this article
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ENVIRONMENTAL CHEMICALS AND THE RISK OF INFECTIOUS 
DISEASE IN CHILDREN
Young children and the developing fetus are especially vulnerable to adverse environmental 
exposures [1, 2]. Pollution and environmental chemicals are recognized as causing substantial 
mortality [3] and adding substantially to the burden of disease [4]. While traditional pollutants, 
such as ambient and indoor air pollution, persistent organic pollutants, heavy metals, and 
pesticides are well recognized as contributing to ill health [4], there is an increasing recognition 
that a wider view of all environmental contributors to adverse health outcomes is required. The 
concept that individual toxicants rarely act alone in increasing disease risk but that all exposures 
must be considered is gaining traction. The totality of exposures is often referred to as the 
“exposome.” [5, 6] The exposome includes exposure to xenobiotic toxicants, endogenous stressors 
resulting from exogenous exposures, toxic metabolites of exposures, dietary constituents, and 
psychological and physical stressors, as well as their biological responses. 

Since the 1950s the world has experienced an “explosion” of synthetic chemicals introduced into 
our environment. While many of these have made lives easier, the safety of the vast majority of 
these chemicals was not tested prior to their introduction. The toxicity of many chemicals and 
their adverse effects on human health may only become apparent after years of use. The use 
of some chemicals has been banned, for example some persistent organic pollutants have been 
banned under the Stockholm convention [http://www.pops.int/], however many others continue 
to be used and untested alternatives to banned substances are frequently used. Two classes of 
chemical attracting recent attention are the per- and polyfluoroalkylated substances (PFAS) and 
the short half-life plastics additives, plasticizers, bisphenols and phthalates. 

PFAS are ubiquitous in modern environments and commonly reported in human biomonitoring 
studies [7]. They are used to provide non-stick, waterproof and greaseproof surfaces on consumer 
products and have been widely used in fire-fighting foams [7]. Human exposure primarily occurs 
via contaminated drinking water, although exposure can also occur through contaminated dust, 
air, and foods [8]. In some countries, including the USA and Australia, large populations have 
been exposed to PFAS-contaminated drinking water, yet direct evidence of adverse health effects 
is scarce and controversial. Epidemiological studies have reported associations between PFAS 
exposures and various adverse health effects, including altered immune and thyroid function, liver 
disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental 
outcomes, and cancer [9]. Exposures during pregnancy have been associated with pregnancy 
complications, including hypertension and preeclampsia, and low birth weight in the offspring 
[10]. Studies in children have reported associations between PFAS exposure and febrile infections 
[11], respiratory tract infections [12], and asthma [13]. Prenatal exposures have also been 
associated with impaired vaccine responsiveness in early childhood [14], atopic dermatitis and 
increased respiratory and urinary infections in girls [15]. Results from different studies are not 
always consistent [13, 15, 16], with some showing effects in girls but not in boys [15, 17].

Bisphenols and phthalates have endocrine-disrupting properties that adversely impact human 
health [18–20]. While these compounds have short half-lives the ubiquitous nature of their 
presence in modern environments mean that essentially all humans have blood levels of these 
compounds, and they can be measured in urine [21]. Ingested bisphenols are rapidly metabolised 
in the liver to an inactive conjugated form and many studies do not distinguish between free 
(active) bisphenols and total bisphenols. However, active free bisphenols can routinely be detected 
in human biomonitoring studies [22]. Free bisphenols also readily cross the placenta, influence 
placental gene expression, and can be measured in cord blood [23–26]. Early literature concentrated 
on bisphenol A but other bisphenols, including bisphenol S, bisphenol F, and bisphenol AF have 
attracted recent attention and have the same endocrine disrupting properties as bisphenol A [25]. 
Similarly, both low and high molecular weight phthalates cross the placenta, can be measured in 
cord blood, and have adverse effects on the developing fetus and children [19, 27–31]. Longitudinal 
human birth cohort studies have contributed much to our knowledge of the adverse consequences 
of environmental exposures during fetal development and in early postnatal life. 

http://www.pops.int/
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This paper will discuss three important, but different, linkages between environmental exposures 
and immune functioning. Firstly, we will present important data from the Hokkaido Study on 
Environment and Children’s Health showing that chemical exposure in early life is associated with 
increased risk of infection and immunologically driven health outcomes. Next, we will explore the 
evidence for air pollution exposure and risk of Covid-19. Lastly, we will discuss how air pollution 
can induce oxidative stress, a process driven by the immune system, and how individuals with a 
genetic predisposition to oxidative stress may be most at risk of the harmful effects of air pollution. 

THE HOKKAIDO STUDY ON ENVIRONMENT AND CHILDREN’S 
HEALTH (THE HOKKAIDO STUDY)
The Hokkaido study includes two birth cohorts, an initial cohort consisting of 514 pregnant women, 
recruited from one hospital in Sapporo between 2002 and 2005 at second to third trimester, and 
a second cohort, consisting of 20 926 pregnant women at gestational age <13 weeks, recruited 
from 37 hospitals in Hokkaido between 2003 and 2012 [32]. The objectives of the study were:

1.	 To examine the effects of perinatal environmental factors on birth outcomes, including 
congenital anomalies and growth retardation.

2.	 To evaluate the prevalence of allergic diseases, developmental, and neurobehavioral 
disorders.

3.	 To identify a high-risk group classified by genetic susceptibility and investigate trans-
generational epigenetic effects of environmental chemicals.

4.	 To provide scientific evidence for health policies based on human epidemiological data.

The study focused on persistent organic pollutants, in other words, environmental chemicals with 
long half-lives, such as dioxins and polychlorinated bisphenols, organochlorine pesticides, such as 
DDT, PFAS and endocrine-disrupting chemicals with short half-lives but ubiquitous exposure, such 
as phthalate esters, bisphenols and organophosphate flame retardants [33]. Major findings from 
the study related to the immune functions to date include:

•	 Description of the cohort exposure levels of dioxins, polychlorinated bisphenols, PFAS, 
bisphenols and phthalates, and methyl mercury [34].

•	 Temporal trends of PFAS from 2003 to 2011 [35].
•	 Maternal to child transfer of PFAS [36].
•	 Reduction of cord blood IgE levels and increase in wheeze in boys to age 3 and related to 

higher dioxin levels in maternal blood [37].
•	 Higher dioxin levels in maternal blood increase risk of otitis media in boys at 18 months of 

age [38].
•	 Prenatal dioxin exposure increases risk of wheeze in both boys and girls at age 7 years [37].
•	 Prenatal exposure to PFAS increases risk of pneumonia in both boys and girls to age 7 years 

[39].
•	 Exposure to phthalates in house dust is associated with allergies in school-aged children 

[40].

Children in the Hokkaido study are currently adolescents and follow up is planned to continue into 
adult life. We look forward to more important findings from this study.

EPIDEMIOLOGICAL EVIDENCE OF AIR POLLUTION INCREASING 
COVID-19
Since the onset of the Covid-19 pandemic there has been an explosion in publications dealing with 
many aspects of the Sars – Cov2 virus, clinical features of Covid-19, and epidemiological studies 
addressing factors increasing susceptibility to and severity of Covid-19. Knowledge in many 
areas remains limited, including why children were relatively spared, an unusual situation with 
respiratory viruses [41]. Following initial observations between poorer air quality and increased 
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Covid-19 mortality in the USA [42], the issue of whether air pollution increases susceptibility to, 
and severity of Covid-19 has attracted much attention. Indeed, a PubMed search conducted on 
September 8th 2021 using the terms “Covid-19” and “air pollution” showed that 554 articles had 
been published in 2020 and 690 published to date in 2021. Of these 80 in 2020 and 107 in 2021 
claimed to be systematic reviews. 

An association between Covid-19 and air pollution is certainly supported by the literature but is not 
simple. For example, some of the most polluted mega-cities in India, Bangladesh, and Africa were 
not initially epicentres of Covid-19. Examination of standardised mortality rates from Covid-19 for 
10 age groups showed a correlation with particulate matter with a mass median aerodynamic 
diameter (PM10) [β 0.147 (95% CI 0.059–0.234), p = 0.001] across 36 Italian provinces [43]. 
Furthermore, measures of long-term air quality (2016-2019) across 71 Italian provinces showed 
associations between case numbers of Covid-19 and annual average NO2 (R

2 = 0.247, p < 0.01), 
PM2.5 (R

2 = 0.340, p < 0.01), PM10 (R
2 = 0.267, p < 0.01) exposure [44]. 

Travaglio et al. [45] examined associations between air pollution in the UK, using either 2018 
data or 5-year average data, and Covid-19 cases and mortality. Using population data, the main 
contributor of Covid-19 was NO2, with a 1µg/m3 increase in NO2 in 2018 associated with a 3.3% 
increase in cases and 3.1% increase in deaths. Restricting the study population to participants 
in the UK-Biobank, where data were available at an individual level, showed that for every unit 
increase in PM2.5 and PM10, the number of Covid-19 cases increased by 1.7% and 11.7%, respectively 
[45]. In general, the associations between air pollutants and Covid-19 cases and mortality were 
similar when 5-year average exposures were used instead of 2018 data. This raises the question 
of whether long-term air pollution exposure is more strongly associated with Covid-19 cases 
and mortality than short-term exposure. This was partly addressed in a Chinese study where the 
association between air pollution exposure and daily Covid-19 case rates were examined with lags 
between 0-7 days, 0-14 days, and 0-21 days [46]. For PM2.5, PM10, CO, and NO2 the associations 
were stronger with longer lags between exposure and cases [46]. These data are consistent with 
a study from New York City that showed no associations between PM2.5 and Covid deaths with a 
lag of 0-1 day [47]. In contrast, there was a significant association between moving average O3 
(ppb) exposure and new Covid-19 cases. A one unit increase in moving average O3 was associated 
with as 10.5% increase in new cases [47]. One short-term exposure associated with increased 
Covid-19 cases is exposure to wildfire smoke. Kiser et al. [48] studied case rates of Covid-19 in 
Reno, Nevada, associated with a major wildfire. They reported that a 10µg/m3 increase in wildfire 
PM2.5 was associated with a 6.3% relative increase in SARS-Cov2 positive test rate. A review of 26 
articles from many countries showed associations between short term air pollution exposure and 
increased cases of Covid-19, suggesting an increase in viral transmission [49]. In the same review 
long-term air pollution exposure was associated with increases severity and mortality [49]. One 
possible mechanism for this association could be alterations in the airway epithelium that make it 
respond to SARS-Cov2 infection with a more pro-inflammatory response. Evidence is emerging that 
both particulate matter and covid-19 induce angiotensin II-dependent proinflammatory cytokine 
production. The lung contains type II alveolar cells that express angiotensin-converting enzyme 
2 receptors (ACE2). SARS-CoV-2 binds to these receptors, and through the renin-angiotensin axis 
induces inflammation. Particulate matter has been shown in preclinical studies to upregulate the 
same pathway, and lead to production of the same cytokines see in the covid-19 induced cytokine 
storm, thus there is the potential for both particulate matter and SARS-CoV-2 to be triggering the 
same pro-inflammatory targets [50]. 

OXIDATIVE STRESS AS A MEDIATOR OF THE EFFECT OF AIR 
POLLUTION ON RESPIRATORY DISEASE
The Lancet Commission report on Pollution and Health highlighted the major contribution 
pollution makes to global mortality and morbidity [3]. Air pollution is a major contributor to 
childhood deaths from pneumonia and adult deaths from chronic obstructive pulmonary disease. 
Evidence shows that long-term exposure to PM10, SO2 and NO2 is associated with an increased 
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risk of tuberculosis, potentially through local damage to the lungs which makes them more 
susceptible to Mycobacterium tuberculosis infection [51]. The physical properties of air pollution 
reduce ultraviolet-B intensity at ground level, which has been linked to lower vitamin D synthesis 
[52]. Adequate vitamin D is required for healthy immune function, and lower levels of vitamin D 
have been associated with several infectious diseases including tuberculosis [53]. Air pollution 
contributes to poor respiratory health in a number of ways, with periods of particular developmental 
susceptibility being during fetal development and in early postnatal life [2]. Exposures occurring 
during fetal development (maternal exposures) result in impaired fetal growth and impaired lung 
growth, both of which result in low lung function at birth [54–57]. Exposures in early life result in 
increased respiratory infections, reduced lung function growth and increase life-long risk of acute 
and chronic respiratory disease [1, 2, 57–60].

While the epidemiological evidence linking air pollution exposure to poor respiratory health, 
including increased respiratory infections, is strong, evidence for the precise mechanisms involved 
is less developed. Children exposed to high levels of traffic related air pollution show biomarkers 
of oxidative damage in exhaled breath [61], and those with reduced or null function variations in 
genes related to antioxidant defence show increased adverse health effects when exposed to air 
pollution [62, 63]. Taken together, these data suggest that the adverse effect of air pollution on 
respiratory health are mediated, in part, via oxidant damage in the airways. 

Oxygen is an oxidant gas and the lungs have developed elaborate mechanisms to defend against 
oxidant stimuli. In the lungs epithelial lining fluid-containing mucus and high levels of the reduced 
form of glutathione provides the first line of antioxidant defence. This is augmented by enzymes 
that detoxify xenobiotics and dietary antioxidants, such as vitamin C. Oxidant exposures result in 
the production of reactive oxygen species (ROS) in the lungs. ROS are generated by neutrophils 
and macrophages as part of the body defence against invading microorganisms. These “intrinsic” 
ROS can contribute to overwhelming antioxidant defences and contribute to oxidant damage. The 
term “oxidative stress” is used to describe the situation where the body’s antioxidant defences are 
overwhelmed by ROS, resulting in tissue damage [64].

Air pollution is a complex mixture of solid, gaseous, and chemical components. Particles generally 
have a carbonaceous core, to which chemicals and oxidant radicals can be bound. These may 
include transition metals, oxidant chemicals, persistent organic pollutants, and other toxicants. 
The composition of particulate matter is influenced by what is burnt and how efficient the 
combustion process was. A relatively newly discovered oxidant product of incomplete combustion 
are environmentally persistent free radicals [65, 66]. These are the subject of another publication 
in this series and will not be discussed further here. PM entering the lungs can induce direct 
epithelial damage, reducing the effectiveness of the epithelial barrier, reduce mitochondrial 
function via inducing oxidative stress, and directly stimulate inflammatory pathways. O3 and NO2 
are more likely to exert their effects via stimulation of inflammatory pathways, with resultant ROS 
generation and induction of oxidative stress [67].

Oxidative damage to the respiratory epithelium is a likely mechanism linking air pollution exposure 
to increased risk of respiratory infection [68]. Impaired barrier function would allow greater access 
for invading microbes to the epithelial cells and sub-epithelial layers. Oxidant damage to epithelial 
cells may reduce the production of anti-microbial peptides, reducing anti-viral and anti-bacterial 
defences. Induced mitochondrial dysfunction results in reduced ATP production and increased cell 
death, potentially allowing greater microbial spread from cell to cell. Induction of pro-inflammatory 
pathways further increases ROS generation and cell dysfunction. One additional potential 
mechanism by which air pollution can increase risk of respiratory infections is via interfering with 
anti-microbial activity of Vitamin D [69]. This activity comes, in part, via upregulating transcription 
of the cathelicidin gene to produce the cathelicidin peptide. This is cleaved to form a cationic 
peptide, known as LL37, which binds to microbes, punching holes in susceptible bacteria or 
destroying the envelope of enveloped viruses, such as Sars-Cov2. Fine particles in air pollution 
appear to inactivate LL37, possibly by changing it from a cationic to a neutral peptide, removing 
its anti-microbial activity, and facilitating viral replication. 
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CONCLUSION
The Pacific Basin Consortium 2021 Focus Meeting allowed research teams to come together 
and share valuable insights on environmental health. This paper summarises a session 
exploring environmental impacts on infectious disease and shows the importance of a range of 
environmental exposures to human health. The Hokkaido Study on Environment and Children’s 
Health is an invaluable birth cohort in the field of children’s environmental health and, as shown 
here, has generated high quality evidence of the negative association between environmental 
chemicals and children’s immune function. Long-time follow-up is warranted to examine how 
effects last and later onset of diseases. The evidence of air pollution’s role in both infectious 
diseases generally, and COVID-19 specifically, is well developed. The role of oxidative stress as a 
mediator between environmental exposures and immune health is emerging as key mechanism 
of interest. Globally, we find ourselves in a time of unprecedented environmental change while 
simultaneously adapting to the on-going effects of the Covid-19 pandemic. Understanding the 
complex interplay between the immune system and the environment is important to protecting 
public health across all populations. 
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